Transfer of Predictive Models for Classification of Statutory Texts in Multi-jurisdictional Settings

PHASYS PUBLIC HEALTH ADAPTIVE SYSTEMS STUDIES

PHASYS is committed to developing practical and useable instruments aimed at improving **pub**lic health preparedness and response practice and policy making through the incorporation of science-based knowledge.

LENA

To improve emergency preparedness and response capacity in state and local public health systems, the Legal Network Analyzer (LENA) was created. LENA allows policymakers to visualize legally directed relationships between PHS agents.

Coding Scheme

- Citation
- Relevance
- Acting PHS agent (Who is acting?)
- Prescription
- Action (Which action is being taken?)
- Goal
- Purpose (For what purpose is action being taken?)
- Type of Emergency Disaster
- Receiving PHS agent
- Timeframe (In what timeframe can/must action be taken?)
- Condition

PHS Legal Database

The coded sections of state statutes and regulations, as well as all coded sections of the National Response Framework Nuclear Incident Annex, were entered into a **publicly accessible database** that is searchable by state and/or PHS agent.

🌓 P ł	ΗA	S Y	S			
niversity of Pi Ublic Hea l	tsburgh th Ada	Gradua D tive S	te Scho ysten	ol of Pub 15 Stuk	olic He dies	alth
L	egal a	nd Eth	ical Iı	ndicat	ors (of Adaptive Public
earch						
riteria						
Search b	y Keyw	ord				
Enter the (separate	Keyword by com	l(s): mas)			۲	OR OAND
Jurisdictio	ns:					
Availab Alabam Alaska Arizona Arkansa Californ	le a s a			- -	> >> <	Selected
Nodeci		I	Jse Ctrl	-key to s	select	multiple items
Node Defini	tions					
Availab Adminis Civic Or	le trative Ag ganizatio	gency n		-	>	Selected
Commu Correcti Departn	onal Insti ent Of A	th Cente tution gricultur	r Ə	Ŧ	<	
Number o	f record	s per so	reen 🗄	5		
Search by I	Keyword	Clear /	All Valu	es		

Example Code Assignment

Example Statutory Provision

The number of patients admitted to any area of the hospital shall not exceed the number for which the area is designed, equipped, and staffed except in cases of emergency, and then only in accordance with the emergency or disaster plan of the hospital.

Corresponding Code

28 Pa. Code § 101.172; Hospital (14); Must Do (2); Suspend (29); Rule/Regulations/Restrictions (4); For Emergency Response (2); Non-specified Disaster/Emergency (5); Public/Individuals (27); Silent (0); Silent (0)

Data Processing

Fla. Stat. §101.62 Florida Annotated Statutes

TITLE 9. ELECTORS AND ELECTIONS (Chs. 97-107) CHAPTER 101. VOTING METHODS AND PROCEDURE Fla. Stat. §101.62 (2010)

§101.62. Request for absentee ballots

(1) (a) The supervisor shall accept a request for an absentee ballot from an elector in person or in writing. One request shall be deemed sufficient to receive an absentee ballot for all elections through the next regularly scheduled general election, unless the elector or the elector's designee indicates at the time the request is made the elections for which the elector desires to receive an absentee ballot. Such request may be considered canceled when any first-class mail sent by the supervisor to the elector is returned as undeliverable. (b) The supervisor may accept a written or telephonic request for an absentee ballot from the elector, or, if directly instructed by the elector, a member of the elector's immediate family, or the elector's legal guardian. For purposes of this section, the term "immediate family" has the same meaning as specified in paragraph (4)(b). The person making the request must disclose:

- 1. The name of the elector for whom the ballot is requested.
- 2. The elector's address.
- 3. The elector's date of birth. 4. The requester's name.
- 5. The requester's address.
- 6. The requester's driver's license number, if available. 7. The requester's relationship to the elector

state	# statutes	# text u.	# relevant	# codes	state	# statutes	# text u.	# relevant	# codes
AK	135	1965	331	386	MD	248	7593	687	760
CA	1174	19857	2296	2712	ND	208	3114	458	656
FL	464	16618	1033	1476	PA	808	10882	1665	1873
KS	304	5003	713	1190	TX	811	30474	1462	1712

Framework for Transfer of Predictive Models

At minimum, framework assumes existence of labeled dataset:

$$D_{train} = \langle X_{train}, Y_{train} \rangle \in T$$

In addition, there may be an arbitrary number of labeled datasets:

$$oldsymbol{D}_{aux} = \langle oldsymbol{X}_{aux},oldsymbol{Y}_{aux}
angle \in \mathcal{D}_{aux}$$

Goal is to train $f(\cdot)$ which performs well on unseen $x_{test}^{(l)} \in \mathcal{D}_{target}$.

Instead of actual prediction for $x_{test}^{(1)}$ probability distribution over label space is used.

$$f(\mathbf{x}_{test}^{(i)}) \rightarrow \langle p(y_1), p(y_2), \dots, \rangle$$

We train a predictive function $f_{train}(\cdot)$ on D_{train} .

In addition, we train $f_{aux}^{(i)}(\cdot)$ for each available $D_{aux}^{(i)}$.

We generate **accuracy matrix**:

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{i,j} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \text{ where } a_{i,j} = \frac{1}{n} \sum_{k=1}^{n} \left[f^{(i)}(\mathbf{x}^{(k)}) = j \right]$$

Next, we generate a **prediction matrix**:

$$(\mathbf{x}^{(k)}) = \begin{pmatrix} p_{1,1} & p_{1,2} & \cdots \\ p_{2,1} & p_{i,j} & \cdots \\ \vdots & \vdots & \ddots \\ p_{m,1} & p_{m,2} & \cdots \end{pmatrix}$$

We perform element-wise multiplication of *A* and $P(x^{(k)})$ to obtain **confidence matrix** for $x^{(k)}$:

$$\boldsymbol{C}(\boldsymbol{x}^{(k)}) = \boldsymbol{A} \odot \boldsymbol{P}(\boldsymbol{x}^{(k)}) = \begin{pmatrix} a_{1,1} \times p_{1,1} \\ \vdots \\ a_{m,1} \times p_{m,1} \end{pmatrix}$$

Each $a_{i,i} \times p_{i,i}$ represents a confidence that $x^{(k)}$ should be labeled with class *j* emulated by $f_i(\cdot)$.

Acknowledgements: Elizabeth F. Bjerke, Hasan Guclu, Margaret A. Potter, Patricia M. Sweeney, Matthias Grabmair, Rebecca Hwa; We are grateful to the University Research Council Multidisciplinary Small Grant Program for funding this project. This publication was also supported in part by the Cooperative Agreement 5P01TP000304 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the CDC.

Jaromír Šavelka Intelligent Systems Program Learning Research and Development Center jas438@pitt.edu

 \mathcal{D}_{target}

 $\sim \mathcal{D}_{target}$

, $p(y_m)\rangle$

$$p_{1,n} \\ p_{2,n} \\ \vdots \\ p_{m,n}$$

 $\cdots a_{1,n} \times p_{1,n}$ $\cdots a_{m,n} \times p_{m,n}$

Experiments

We generate following data sets:

For each task we conduct **8 related experiments**: (AK,MD,TX,KS,CA,ND,PA)

experiments.

Results

Florida							Maryland									
task	0aux	1aux	2aux	3aux	4aux	5aux	6aux	7aux	0aux	1aux	2aux	3aux	4aux	5aux	6aux	7aux
AA	.43	.45	.45	.46	.47	.47	.48	.48	.42	.44	.45	.47	.48	.50	.50	.51
PR	.78	.80	.81	.82	.82	.82	.82	.82	.86	.89	.89	.89	.89	.90	.90	.90
AC	.21	.22	.23	.24	.24	.25	.26	.26	.24	.25	.26	.26	.27	.27	.28	.28
GL	.25	.27	.28	.28	.29	.29	.30	.30	.27	.29	.30	.31	.32	.32	.33	.33
PP	.67	.70	.71	.71	.72	.72	.72	.72	.74	.77	.78	.78	.78	.78	.79	.79
ET	.78	.79	.79	.79	.80	.80	.79	.80	.73	.76	.76	.77	.77	.77	.78	.78
RA	.30	.30	.31	.31	.32	.32	.33	.33	.30	.30	.31	.31	.31	.32	.32	.32
CN	.62	.66	.67	.67	.67	.67	.67	.67	.58	.63	.63	.63	.64	.63	.64	.64
TF	.80	.81	.82	.83	.83	.83	.83	.83	.81	.83	.84	.84	.84	.84	.85	.85
	1			Florida					1			Maryl	and			
		1		I		1 1	1				1			Ι		
	0.9-								0.9-	○○○○○○ ● 0 8歳8	© │ ○				 ₀∞∞∞∝	† ⊳ ⊙
	0.8-			essse ا	o••••••				0.8-	0 0		≥⊙⊙⊙ 	000 0 ⁰⁰ 00000)		+
	0.7-	ອິ					• – • –		0.7	888 0		8 ⁸			Ŏ	_
	0.6-			8 99°°		•	_		0.6			Ø		• •		_
	0.5						_		0.5			8 0 0	8000	88		_
	0.4		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0	. ° I		_		0.4 °			૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ				_
			^{© قاو} ره و • • • • • • • • • • • • • • •							 						
	0.3-		•••••• ••••••				_			00						
	0.2-				ං ෂි8ි6	88 88	_		0.2-			'o				_
	0.1-						_		0.1-		6					_
	0 AA	PR A	AC GL	PP	ET F	A CN	TF		0 A	A PR	AC	GL PF	P ET	RA (CN TF	
Fra	mnl	Δ														
	mpr	C														
COM	AR 01	.01.20	03.18	(D)(2)					task	Manual	0aux 1a	ux 2aux	3aux 4a	aux 5aux	6aux 7	'aux
			00.10						AA	26	20 26	26 26	26	26 26	26	26
COD	E OF N	MARY	(LAN	D RE	GULA	ATION	NS		PR	2	20 1	1 1	1	1 1	2	2
[ITL]	E 01. E	EXECU	JTIVI	e dep	ARTN	ΜΕΝΊ	-		AC	21	43	2 2 21 21	2 21	2 2 21 21	21	21
SUBT	ITLE	01. EΣ	(ECU	TIVE	ORD	ERS					48	43 43 48	43 48	43 43 48 48	48	48
¬ , 1	1• 1		C 11	\mathbf{C}	,		·	C	GL	1	50	50 50	50	40 40 50 50	50	50
Lstab	lishme	ent of	t the	Gove	ernor	s Off	ice O	Í	PP	1 2	1 2	1 1 2 2	1 2	1 1 2 2	1 2	1 2
101110	elanu	Secur	ity						FT	4	4 5	4 4 5 5	4 5	4 4 5 5	4	4 5
Гhe I	Directo	or sha	11 be 1	respoi	nsible	for t	he fol	_		19	5	19 19	19	19 19	19	19
owing activities: Advise the Governor on							RA CN	20 0	20 7	20 20 7 0	20 0	20 20 0 0	20 0	20 0		
policies, strategies, and measures to enhance								29 20	29 30							
and i	mprov	ve the	e abil	ity to	dete	ct, pr	revent	//			40	40				
orepare for, protect against, respond to, and						TF	0	41 0	41 0 0	0	0 0	0	0			
ecov	er froi	n, ma	in-ma	de en	nergei	ncies	or dis	-	P	1	.56	.59 .78	.78	.78 .78	.83	.83
asters	s, inclu	ıding	terroi	cist atl	acks;				\mathbf{F}_1	$\begin{array}{c c} 1 \\ 1 \end{array}$.5 .53	.78 .89 .67 .83	.89 .83	.89 .89 .83 .83	.89 .86	.89 .86
									·							

Kevin D. Ashley Intelligent Systems Program Learning Research and Development Center School of Law

$\boldsymbol{D}_{train}^{(i)}$	—	$\langle \boldsymbol{X}_{train}^{(i)}, \boldsymbol{Y}_{train}^{(i)} \rangle$	(100 times)
$\boldsymbol{D}_{test}^{(i)}$	=	$\langle \boldsymbol{X}_{test}^{(i)}, \boldsymbol{Y}_{test}^{(i)} angle$	(100 times)
$\boldsymbol{D}_{aux}^{(i)}$	=	$\langle \pmb{X}_{aux}^{(i)}, \pmb{Y}_{aux}^{(i)} angle$	(# of aux states)

(KS,PA,AK,ND,CA,TX,MD) (PA,CA,ND,MD,AK,TX,KS) In related experiments there are 100 runs for first and eighth experiments and **300 runs** for other